FUZZIFICATION OF ASAT’S RULE BASED AIMPOINT SELE

U.

19
iy

!

93-139
i

93 e

The views,

Period Covered:

D-A266 068
Wil - DTIC

ELFCTE
JUNZ22 1993

FINAL TECHNICAL REPORT ‘:

CTION

by

Thomas H. Weight, Ph.D.

02 Nov 92 to 15 Jun 93

Contract DASG60-93-C-0005
for

S. Army Strategic Defense Command, Alabama 35807-3801

15 June 93

Dr. Weight and Associates

7005 E. Spring St.
Long Beach, CA 90808

3\ L ﬂ pﬁ”;“”k

Thomas H. Welght
Principal Investigator
Dr. Weight and Associates

ey

. -
5 | Q’E)Q
dfiMdings contained in this report are

or decision,

' opinidbns, and-
those of the author and should not be construed as an official
.51 unless so

Department of the Army position

policy,

designated by other documentation

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE

FORM APPROVED
REPORT DOCUMENTATION PAGE oueme oreeeee
1a REPORT SECURITY CLASSIFICATION 1b. RESTRICTIVE MARKINGS
UNCLASSIFIED } “roooomrmrmmomsmmmmnmrmmmnes
3. DISTRIBUTIONAVAILABILITY OF REPORT
CLASSFICATIONAUTHORITY - -~ -vemocoonnn !
= SeouRT AT Approved for Public Release: SBIR report.
2>. DECLASSIFICATIONDOWNGRADING SCHEDULE = -~ =------~-~ distribution unlimited
4. PERFORMING ORGANIZATION REPORT NUMBER(S) 5. MONITORING ORGANIZATION REPORT NUMBER(S)
[50, NAME OF PETF ORMING ONGANI ZATION &, OFFICE SYMBOL 7a. wm
Dr. Weight and Associates (1t applicatable) U. S. Amy Strategic Defense Command
6c. ADDRESS (City, State, and ZIP Code) 7o. ADDRESS (Cly, State. and ZIP Code)
7005 E. Spring St. Contr & Acq Mgt Ofc., CSSD-CM-CB
Long Beach, CA 90808 P.O. Box 1500
Hunsville, AL 35807-3801
[~8a. NAME OF FUNDING/SP ONS—GRSNG—-r-a).'OFF' FICE SYMBOL | 9. PR i NT ICATION NUMBER
ORGANIZATION (it o Mlicable) DASG60-93-C-0005
8c. ADDRESS (City. State, and 2IP Code) |10 SOURCE OF FUNDING NUMBERS
PROGRAM PROJECT TASK WORK UNIT
ELEMENT NO. NO. NO ACCESSION NO.
"""""""""""""""""""" Peesso2 } T Tttt T
11. TITLE (Inciude Security Classification)
Fuzzification of ASAT's Rule Based Aimpoint Selection
[~ 12. PERSONAL AUTHOR(S)
Thomas H. Weight, Ph.D.
13a. TYPE OF REPORT 13. TIME COVERED 14. DATE OF REPORT (Yoar.Manth,Day) 15. PAGE COUNT
. , 2 Nov 92 15 June 93
Final Technical mOM_ T 1993, June. 15 6
16. SUPPLEMENTARY NOTATION
17. COSATI CODES 18. SUBJECT TERMS (Continue on reverse if necessary and identity biock numbers)
| FIELD GROUP SUB-GROUP fuzzy logic, fuzzy sets, fuzzy systems, aimpoint algorithms.
""""""""""""""" kinetic energy weapon, ASAT. Anti-Satellite KEW
19. ABSTRACT (Continue on reverse # necessary and idertfy biock number)
The aimpoint algorithins being developed at Dr. Weight and Associates are based on the concept of fuzzy logic.
This approach does not require a particutar type of sensor data or algorithm type. but allows the user to develop a
fuzzy logic algorithm based on existing aimpoint algorithms and models. This provides an opportunity for the user
to upgrade an existing system design to achieve higher performance at minimal cost.
Many projects have aimpoint algorithms which arc based on "crisp” logic rule based algorithms. These algorithms
are sensitive to glint, corner reflectors, or intermittent thruster firings, and to uncentainties in the a priori cstimates
of angle of attack. If these projects are continued through to a demonstration involving a launch to hit a target, it is
quite possible that the crisp logic approaches will necd to be upgraded to handle these important error sources.
Ry FEDUNLMTED | & SAMEASRPT o OTICusERs | 21 ABSTRACT SECURITY CLASSIFICATION
8. AL . ([.
Robert G. Mcintosh 25-955-4077 CS%D»(‘M-(‘B

-;v'ious Ri0i1s e §!€Uﬁ.. m
_DU'T-T)rm 1-17’3, JUN-EE e UNCLASSIFIED

intentionally left blank

1i

SUMMARY

The aimpoint algorithms being developed at Dr. Weight and
Associates are based on the concept of fuzzy logic (or fuzzy sets).
This approach does not require a particular type of sensor data or
algorithm type, but allows the user to develop a fuzzy logic
algorithm based on existing aimpcoint algorithms and models. This
provides an opportunity for the user to upgrade an existing system
design to achieve higher performance at minimal cost.

Many projects have aimpoint algorithms which are based on “crisp*
logic rule based algorithms. These algorithms are sensitive to
glint, corner reflectors, or intermittent thruster firings, and to
uncertainties in the a priori estimates of angle of attack. If
these projects are continued through to a demonstration involving
a launch to hit a target, it is quite possible that the crisp logic
approaches will need to be upgraded to handle these important error
sources.

This study looked at applying fuzzy logic to the ASAT aimpoint
algorithm. The current baseline ASAT aimpoint algorithm is based on
a "crisp" logic rule based algorithm. The ASAT procject is currently
considered to be at risk because the current baseline algorithms
ignore glint. This study investigated retro-fitting the current
baseline algorithms with fuzzy logic. The advantages of using fuzzy
logic according to our study appear to be:

1. Broadly Useful: Fuzzy logic can be effectively applied
to a broad spectrum of different type of sensors,
algorithms, and problems.

2. Speed: This approach to using fuzzy logic would push
all of the computationally intensive algorithms into the
non-real time code. The result is that the real time code
is extremely fast.

3. Timeliness: This approach can be developed into a
useful working tool fairly quickly.

4. Robustness: Fuzzy logic 1is model free. As a =—-

.) A:l: o]
consequence, fuzzy logic is insensitive to design errors | ~"" '0',2

and errors or uncertainty in the data being processed. r.1i%
[%
5. Accuracy: This study found that a factor of ten
reduction in maximum aimpoint error resulted from the use

of fuzzy logic.

Currently, Dr. Weight and Associates is involved in a continuing
effort to produce a commercialliy marketable automated fuzzy logic
development system which is capable of supporting the devclopment
of aimpoint algorithms for the ASAT, GBI, ERINT, E’I, DEW, LADAR,
THAADS, Brilliant Pebbles, Brilliant Eyes, etc..

111

Cragl
O TAR
a2 o d

(2 SRR

ey e

setd

PREFACE

This report describes the fuzzy logic aimpoint feasibility study
and the software development undertaken at Dr. Weight and
Associates under the Phase I SBIR contract DASG60-93-C-0005
sponsored by the U.S. Army Strategic Defense Command.

A Critical need currently exists for efficient aimpoint algorithms
for kinetic energy weapons and for an effective automated tcol tn
support the development of aimpoint rules during high stress, time
constrained combat situations. In addition to aimpoints, there are
problems in RADAR multipath, robotic contrecl systems, senscr
processing, and sensor fusion which can benefit directly from the
use of fuzzy logic. In order for the benefits of this technology to
be fully realized, the develcpment of fuzzy logic will have tc be
automated in the relatively near future.

Our study of fuzzy 1logic aimpoint algorithms required the
development of a generic data base of targets, and modelling the
selection of aimpoints using several approaches. The two baseline
ASAT aimpoint algorithms were compared to a human operator and to
fuzzy logic. As a result of the preliminary comparison, one cf the
ASAT algorithms and the operator selection were rejected.

The fuzzy logic approach involves the use of existing crisp logic
rule based algorithms. These rule based algorithms are applied to
various scenarios involving factors such as glint and other sources
of error. Fuzzy logic is used to determine which and to what extent
each of these algorithms is to be applied. Fuzzy logic ends up
taking the centroid (weighted average) of the aimpoints produced by
the various rules. This centroid 18 seen to be much more accurate
on average then any of the individual algorithms.

One of our findings is that there is a critical need for an
automated approach to generating fuzzy systems. Current fuzzy
development systems are basically operator intensive tools somewhat
like a word processor: they are extremely useful but they do not
design the system for you. We are proposing to continue work on an
automated fuzzy development tool which will effectively support
current and future military and commercial requirements in
applications involving time critical, high pressure or combat
situations.

We have not been required to work in a vacuum on this project. In
addition to the several articles on the application cof fuzzy logic
in general and on fuzzy contrcl systems in particular, there 1is
much 1nterest in both the public and private sectors. 1In
particular, there is a lot of interest in the application of fuzzy
logic to aimpoint algorithms. We would like to thank the managers
and engineers of Lockheed, Hughes, McDonald Douglas, TRW, and
espe’ *ally Rockwell International for their time and their valuable
suggestions.

v

TABLE OF CONTENTS

1.0 INTRODUCTION

2.0 FUZZY AIMPOINT ALGORITHM STUDY
2.1 Generic Targets .
2.1.1 Three target types
2.1.2 Trajectory files
2.1.3 Software Tools
2.2 Image Intensity Maps .
2.2.1 Point Spread Functlons
Generating the images
Software tools

- .
T« .
wl\n—-*

Do

[¥8;

@
sbnblb-lbo ww3 Nf\)

Gllnt ranges . .
Glint off dlfferent surfaces
tic Fuzzy System Generation
Adaptive Fuzzy Systems
Neural Networks

Basis Functions .
Clustering Algorlthms

2. 4 5 Computed Neural Networks

2.5 Manual Rule Generation .

2.6 Manual Aimpoint Generation

2.7 Automatic Scoring

t

o

1=

g
NNNL\)C Nt\.)l—'t\)t\.)
.:swt\n—-\m [N o

3.0 STATUS OF ACCOMPLISHMENTS
3.1 Develop target profiles and 1nten51ty maps
3.2 Modify existing fuzzy logic software tool
3.3 Develop display based scoring system
3.4 Collect and analyze performance data
3.5 Future research and development

4.0 CONCLUSIONS AND RECOMMENDATIONS

4.1 Conclusions .
Fuzzy loglc w1ll reduce max1mum error
Fuzzy logic is robust
Fuzzy logic can be fast
Timely development of Fuzzy loglc
Automating Fuzzy System Development .
Underlying algorithm needs to be continuous
Target needs to be blurred
mmendatlons
.1 Need automated development system
.2 Errors in angle of attack
.3 Computing neural networks
.4 Investigate hybrid systems

\lG\U’lbbb)l\)l—‘

N
[\

Rec

B DS DD
N Nl el alal il

5.0 POTENTIAL FOR COMMERCIALIZATION
5.1 Selling aimpoint algorithms
5.2 Selling automated development tools ..
5.3 Selling fuzzy logic and neural network expertlse

v

ot

0O 00 00 Wi > > i

Appendix A - Software listings

filename:
filename:
filename:
filename:
filename:
filename:
filename:
filename:
filename:

A_RULES
C_Fuzzy
DISP .
MK_ASAT
ME_FRN
MK_MAP .
P_AIMPTS
SHOW .
SHOW_3

vi

>

o D

Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure

Figure

Figure
Figure
Figure

Figure

10:
11:
12:
13:

LIST OF FIGURES
The three targets considered
The components of target one
A typical trajectory file
Computing ASAT aimpoint errors
Creating fuzzy aimpoints
We considered several point spread functions
Justification for the range of glints used
Three sets of membership functions were computed

The membership functions determined how to weight the
three versions of the ASAT rules e .

Errors resulting from three models
Close range relative errors
Middle range relative errors

Far range relative errors

vil

(o)

10
11
13

16

17
18
22
23

24

1.0 INTRODUCTION

The aimpoint algorithms being developed at Dr. Weight and
Associates are based on the concept of fuzzy logic. This appreach
builds on and essentially replaces *“crisp" rule based algorithms
with fuzzy rule based systems. This approach 2zazllows existing
projects to retrofit their current baseline aimpoint algorithms
with fuzzy algorithms at very little cost and risk.

The approach investigated uses existing algorithms which are
applied to a broad spectrum of 1mage models. These image models
correspond to the various scenarios likely to be encountered on a
mission e.g. low, medium, or high glint off of wvarious solar
panels. During an actual mission, image parameters are evaluated to
determine to what extent each scenario applies. The aimpoints
corresponding to each scenario are weighted and averaged to produce
a final aimpoint.

Some of the advantages of this approach are robustness, low risk,
and low cost:

a. Fuzzy logic 1s insensitive to many types of error
including modeling, and design errors. In fact fuzzy
logic has the important property that it is tolerant of
substantial deviations from the optimal membership
functions. The difference in the quality of the aimpoints
produced using cntimal or suboptimal membership functions
are not substantially different. When we compared the
results using the optimal membership functions and
membership functions which are easily machine generated,
the difference was found toc be small.

b. The approach to using fuzzy 1logic which was
investigated involves using the current baseline ASAT
aimpoint algorithm and applying fuzzy logic to it. This
approach has the advantage that the quality of the
aimpoints produced is at least as good as the baseline
algorithms. This reduces the design risk to where we have
essentially nothing to lose and everything to gain by
using fuzzy logic.

c. The fuzzy logic algorithms involve very little new
code and very little in terms of processor capabilities:
additional memory and throughput required are minimal.
The additional requirements are well within what are
considered reasonable design margins by modern systems
engineering standards.

Some of the disadvantages of this approach are the need for an
automated tool for the development of fuzzy systems and the
relatively advanced stage of development of many projects.

a. an automated tool for fuzzy system design is going to
be somewhat more sophisticated than the tool currently
envisioned to develop the ASAT aimpoint algorithms. The
current baseline algorithms tend to ignore issues like
glint and errors in angle of attack. As a result, these
algorithms are relatively simple and the procedure for
developing the aimpoint rules is also relatively simple.
The fuzzy logic approach does not ignore these sources of
error, and the tool for developing the aimpoint rules
will be that much more complicated.

b. The ASAT project 1s nearing that point at which 1t
will be locked into the current algorithm set. In order
to make substantial modifications to the baseline real-
time algorithms, these modifications will need to be
coded and tested within less than one year. This will
require the development o©of the real-time fuzzy logic
algorithms before that development tocl is designed and
tested.

The basic goal of our Phase I research was to investigate the use
of fuzzy logic in the ASAT aimpoint algorithm. Section 2.0
describes, 1n some detail, the research and development efforts
expended by Dr. Weight and Associates to meet the Phase I technical
objectives and summarizes the important Phase I results.

Section 3.0 describes the objectives of the Pnase I contract. Under
the current contract, the following objectives were completed at
Dr. Weight and Associates:

a. Developed a data base of unclassified generic target
profiles and intensity maps. We selected the most
challenging target profile and used that for all of the
test cases. After some experimentation, we selected a non
standard point spread function. This has the advantage of
avoiding any possible issues with security. The target
profiles where converted into high resolution images
corresponding to targets at various ranges and various
aspect angles. These 1images were point spread and
converted 1into the low resolution images used for
analysis.

b. Modified existing fuzzy logic software tool. This
modification consisted of the inclusion of the ASAT
baseline algorithms. We experimented with both of the
baseline algorithms (extent and centroid) and settled on
the centroid algorithm for our study. This tool
ultimately produced several variations of the baseline
ASAT algorithms, with several point spread functions, and
with several fuzzy logic membership functions.

c. Developed display based scoring system. Software was

2

developed to display both the target profiles and the
images. The profiles and target trajectories were
verified using one of these tools. The images where
displayed in order to allow an operator to identify the
aimpoint. This approach was found to be hopeless and was
abandoned in favor of using the resources to investigate
autcmating fuzzy system development.

d. Collected and evaluated simulation data. Most of the
data collected invclved holding all put one parameter
constant. This was necessary because of the huge amount
of image processing necessary to build the final images
at ten different ranges. The results were plotted and
compared along with the membership functions, and the
Root Mean Square errors.

e. Investigated automating fuzzy system generatior..
Current research publications were reviewed to determine
the various approaches. These approaches were analyzed to
determine their advantages and disadvantages. The results
of this effort were combined with the findings of our
research, and an approach was developed which seems
optimal for our customers perceived needs.

Section 4.0 gives a statement cf conclusions and recommendations.
We concluded that all project technical objectives were attained.
This project shows that fuzzy logic is a powerful technigue when
applied to the problem of selecting aimpoints. It allows an
evolutionary approach to algorichm development which capitalizes on
the currently popular aimpoint algorithms. After reasonable
algorithms are developed, fuzzy logic is chen applied to provide
the features of robustness, high reliability, and high accuracy. We
have found that at extreme range the performance of the fuzzy logic
algorithms degrade to the performance of the c¢risp logic
algorithms, but at short range the fuzzy logic algorithms are far
superior.

2.0 FUZZY AIMPOINT ALGORITHM STUDY

Dr. Weight a'd Associates apprcach to using fuzzy logic in the ASAT
aimpoint alg.rithm has the capability of supporting a wide range of
commercial and military projects. By allowing the customer to use
their baseline crisp lcgic algorithme, this approach allows the
application of fuzzy logic to projects with a minimum of risk and
cost.

Our goal was to determine whether fuzzy logic could make a
substantial improvement in the performance of the ASAT aimpoint
algorithm in the presence of glint. In order to achieve this goal,
we started with a fairly accurate model oI +the current ASAT
baseline algorithms and images. These allowed us to measure the
nerformance of the fuzzy logic algorithm relative to the ASAT
bacesline. After chowing that fuzzy logic could improve aimpoint
accuracy, it was then neces.ary to d=cermine whether fuzzy logic
would be practical from the stand point of being autoratically
developed.

2.1 Generic Targets.

It was necessary to provide a database of targets which
reupresented a realistic cress section of reality. At the same time,
it was required to avoid any information which could be construed
as being classified. Finally, we settled on one target type which
had the advantage of being the most error prone.

2.1.1 Three target types.

We considered three different target (see Figure 1) profiles with
different bodies, reflective surfaces, and supporting members.
After a little analysis it was determined that one profile offered
the advantage of being most sensitive to glirt. This target profile
was used in all subsequent modeling and analysis. The target
selccted (target 1) has a relatively small body combined with two
long solar panels {(see Fiqgure 2).

Each target configuration was described in terms of rectangular
panels. Each target was allowed up to twenty different panels, and
each panel could be oriented in any direction. If part of any panel
is masked by some other panel then the masked part of the panel
contributes no energy to the image.

2.1.2 Traject~ry files.

Trajecrory files were defined which describe the target ranges,
angles of attack, and glint. The trajectory file defines how many
images are to be formed, and each image corresponds to a different
range (see Figure 3). An initial setting for the angle of attack
can be specified. Then for each image both the angle of attack and
the glint can be changed. The angle c¢f attack 1is changed by

4

Target #1

Target #2

\
T
—

Target #3

Figure 1: The three target profiles considered. Target
number one was used because it had the greatest
errors resulting from glint.

5

Solar Panels

/)
/)

Body

Figure 2: The components of the target. We assumed
that the solar panels extending out the back of the
target would be highly spectural surfaces which could

be big glinting surfaces.

filename TGT06321.TDF
5 number of surfaces

0.500000 0.500000 -0.500000
-0.500000 0.500000 -0.500000
-0.500000 0.500000 0.500000

0.5000C0 0.500000 0.500000

0.500000 0.500000 -0.500000
-0.500000 0.500000 -0.500000
-0.500000 0.500000 0.500000

0.500000 0©.500000 0.500000

0.500000 ©0.500000 -0.500000
-0.500000 0.500000 -0.500000
-0.500000 0.500000 0.500000

0.500000 0.500000 0.500000

0.5000006 0.500000 -0.500000
-0.500000 0.500000 -0.500000
-0.500000 0.500000 0.500000

0.500000 0.500000 0.500000

0.500000 0.500000 -0.500000
~0.500000 0.500000 -0.500000
-0.50U000 0.500000 0.500000

0.500000 0.500000 0.500000

0.00 0.00 0.00 aimpoint

10.0 -12.0

00.0 xyot yrot zrot

1 number of frames

1 number of images

1 0.000000
1 1 surface
2 1 surface
3 1 surface
4 1 surface
5 1 surface

Figure 3: A Typical Target Trajectory File.
file describes the target surfaces,

0 1 image rotation axes fcount

color
color
cnlor
color
color

Rectangular surfaces are defined
which together define the surtface
of the target. Each rectangula:
surface is defined by four points
in three dimensional space.

In addition to these target
surfaces, the aimpoint 1s alsc
defined. This aim point allows
later scftware to determine
the errors computed by the
various aim polnt algorithms.

The three values (xXrot,yrot,zroti
define the init. orientation cf
the target: x,y.,2 are yaw, pitch,
and roll respectively.

The number of frames is the
number of pixel maps which will
produced. The number of images
is the number of different
intensity and orientations which
will define the trajectory.

Image, rotation,axes, and fcount
give the image number, the angle
of rotation, the axes of rotaticn
and the number of maps to be
from this image.

Finally, surface and coloxr give
surface number and its intensity.

This
and their

brightness. It also describes the number of frames
of image data to be produced and the sequence of
rotations to be applied to the target from frame
to frame.

,*44
\

specifying deltas from the previous value, while the required glint
is simply specified. Glint is modeled by assigning an energy value
to each target panel. Each panel can be assigned a value between
one and fifteen independent of all other panels.

These trajectory files allow us to model targets through a series
of images. The first image may correspond to an extreme long range.
This long range c¢an correspond to a target which covers a
relatively small fraction of a pixel before applying the pcint
spread function. A series of images are produced which represent
the target from acquisition to just before Kill Enhancement Device
(KED) deployment. At deployment of the KED, the target is an array
of approximately five by five pixels.

2.1.3 software Tools (see Figures 4 and 5).

Several software tools were developed to help debug trne trajectory
files. The first tool merely displays three views of the target:
front, top, and side. This makes it fairly easy to verify the
target file description of the target configuration. In addition,
this tool displays each rectangular panel 1in the target in a
different color independent of glint. This makes 1t easy to
determine which surfaces are covered.

Aanother software tool displays the entire trajectory without
actually building the image file. This tool allows the operator to
review the trajectory and verify the image 1s correct in terms of
angle of attack, and glint. This tool was necessary because
actually building the image file was extremely time consuming -
approximately eight minutes per image.

2.2 Image Intensity Maps.

There are several factors which influence the images generated,
Because of limitations in time and rescurces, we decided to ignore
several important parameters. In particular, parameters which are
under the control of design engineers were for the most part
ignored e.g. the point spread function. In addition, given that the
signal to noise ratio gets extremely large closer to the target, we
ignore noise.

2.2.1 Point Spread Functions {see Figure §).

Although we eventually focused on glint, we initially started an
investigation of point spread functions (PSF). This initial study
included a wide range of functions which invelved very little to a
lot of blurring. It rapidly became clear that we could not include
PSF’s 1in our parametric study. We quickly settled on a nonstandard
PSF which combined the two benefits of not being classified and of
providing sufficient blurring to allow sub-pixel resolution.

- SHOW _3 diaplays thvee

Prolotype views of target protile

Traget e, T
Description SHOW displays the

File entire trajectory
SHOW_3 displays thyee
MK_MAP creates the Test views of targel protie
prototype pixel map Trage! feceseeem—lpi— — — —
Description SHOW displays the
Flie sntire trajectory

DISP displays the

pixe! map on the CRT
Protatype using & random number MK_MAP crestes the
Map scheme test file pixel map

A_RULES computes the

ASAT aimpoint rules i DISP dispiays the

based on the Prototype Test pixel map on the CRT

Pixel Map Pixel using a random number
Map schems

MK_ASAT computes the

ASAT > ASAT aimpoints based
Aimpoint on the Test Pixel Mep
Rules and the ASAT aimpoint
rules

ASAT
Almpoints

Figure 4: Computing ASAT aimpoint errors. These files
and programs are used to compute the ASAT aim
point rules, and the resulting ASAT aim point errors.

o e o+ — — — — —— — . — . ——r + — — —

MK_MAP creates the
prototype pixel map

Prototype
Pixel

F_RULES computes the

Fuzzy aimpoint rules
based on the Prototype

Pixel Map

SHOW_3 displays three
viaws of target profile

SHOW dispiays the
entire trajectory

DISP dispiays the

pixe! map on the CRT
using a random number
scheme

* Possible Phase Il

MK_MAP creaies the
test file pbxel map

Test
Pixel

DISP dispiays the

pixe! map on the CRY
using & randorn number
scheme

(Computed by hand in phase)

C_FUZZY computes the
Fuzzy aimpoints based
on the Test Pixel Map
and the Fuzzy aimpoimt
rules

Fuzzy
Almpoints

Figure 5: Creating fuzzy aimpoints. These files and
programs are used to generate the fuzzy rules, and
to compute the fuzzy aimpoints.

10

0.036 | 0.120 | 0.036

0.120 | 0.378 | 0.120

0.036 | 0.120 | 0.036

Figure 6: We considered several point spread functions,
but we finally selected the one shown above. This point
spread function does not coincide with the ASAT PSF.

11

2.2.2 Generating the images.

The images were generated using a commercial graphics package.
Initially, the images were formed on the computer screen. The
different levels of glint were represented by false colors. After
the image was formed then the pixels were allocated to various sub-
pixel bins. The "energy" in each bin was accumulated, and blurred
as defined by the programmable PSF. Finally, the total energy 1in
each pixel was accumulated for output to an image file as a
function of range.

2.2.3 Software tools (see Figures 4 and 5).

The tool which was developed accepts target description files and
produces images files. We used a brute force approach which
required very little programming effort, but which runs fairly slow
on our computer. It is totally automated so that we were able to
generate target image files during twenty hours runs while working
on other tasks.

2.3 Glint.

Glint was specified as a major concern in the solicitation topic.
As such, we addressed this i1issue first and in the most depth.
Images were collected and analyzed corresponding to a complete
range of glint coming of the "solar" panels.

2.3.1 Glint ranges (see Figure 7).

The target description file allows a dynamic range in the glint of
fifteen. While actual glint may far exceed this dynamic range, it
is adequate for our study. Graphs of the error generated by glint
shows that nearly the maximum amount of error 1is achieved at
approximately a factor of ten increase in the energy coming off the
solar panel as compared to the target body.

2.3.2 Glint off different surfaces.

In our study, we focused on glint coming off both of the solar
panels simultaneously. This is as opposed to glint off of one panel
or the other. The 3justification foe ignoring these other
combinations rests on the fact that at long range both panels
appear to be collocated. At short range, one panel has essentially
the same effect as an error in the angle of attack.

2.4 Automatic Fuzzy System Generation.

Most approaches to automatically generating fuzzy systems have
problems which are related to training or to requiring an operator
to predefine an 1initial system configuration. Although several
learning paradigms have been identified, almost all of the

12

Aim points selected
in the presences of

L - low glint
M - medium glint
H - high glint

Errors resulting from using the
base line ASAT aim point algorithm

DOITIIM

low

1 Glint levels - ratio of panels to body 15

Figure 7: Justification for the range of glints used. The

error approaches its maximum fairly quickly. In other words,
it takes very little glint in order to cause the maximum
amount of error due to that source.

13

algorithms identified relied exclusively on the neural network
paradigm.

2.4.1 Adaptive Fuzzy Systems.

Several approaches to automatic fuzzy system development are based
on neural network algorithms. This simply means that the learning
features of neural networks are modified and applied to fuzzy
systems. An example of this approach is described as adaptive fuzzy
systems. Adaptive systems are systems which modify themselves in
real-time to adapt to changing circumstances. This is actually more
general then our requirements call for. Our application would
simply call for applying a training set to the fuzzy system and
letting it adapt until is produced satisfactory results.

REF: Kosko, B., Neural Networks and Fuzzy Systems, Prentice Hall,
Englewood Cliffs, NJ, 1992.

Adaptive fuzzy systems have several problems. All approaches that
we studied required an initial fuzzy system to be defined by the
designer. This system was then modified in extremely limited ways
during the adaptive process. Typically, weights would be assigned
to each fuzzy rule. During the adaptive process the weights would
be adjusted but the rules and membership functions would be
unchanged.

A problem with most approaches based on neural networks is the need
for training. Typically, a training set is used to train the
system. This training process can be extremely time consuming. In
addition, this process can also be unreliable based on the quality
of the training set.

A further problem with neural network algorithms in general is that
often i1t is difficult or impossible to interpret the results. The
weights of the connections in the network usually do not correspond
in any obvious way to the real world. In addition, the is no "paper
trail® which allows replication or engineering review of the
results.

2.4.2 Neural Networks.

Many of the approaches to automating fuzzy systems are based on
neural networks. Almost invariably this means that the learning
algorithm associated with some neural network is used to train a
fuzzy system. More recently some researchers have developed neural
networks which correspond exactly to a fuzzy system. This
correspondence is a one-to-one mapping from the neural network to
the fuzzy system. Again this approach requires starting with an
initial neural network defined by the designer. Typically a back
propagation algorithm will then be used to train the neural network
and to produce the fuzzy system. This approach has the advantage
that training can be used to define the membership functions as

14

well as weights on the fuzzy rules.

REF: S. Horikawa, T. Furuhashi, and Y. Uchikawa, "On Fuzzy Modeling
Using Fuzzy Neural Networks with the Back-Propagation Algorithm,*
IEEE Trans. Neural Networks, Vol 3, pp. 801-806.

2.4.3 Basis Functions.

In this approach, a system of basis functions are defined which can
be combined to represent any membership function. Usually the basis
functions are restricted to be gaussian but this is not necessary.
The gaussian membership functions are then made to correspond to
neural network activation functions (actually two sigmoidal
activations functions represent one gaussian membership functions).
The result is a neural network which can be trained by adjusting
the slope and offset of these basis functions and adjusting various
welights.

REF: L. Wang, and J. M. Mendel, "Fuzzy Basis Functions, Universal
Approximation, and Orthogonal Least-squares Learning," IEEE Trans.
Neural Networks, Vol 3, pp.807-814, 1992.

2.4.4 Clustering Algorithms.

An approach to fuzzy rule generation is based on clustering
algorithms. In this apprcach, hyper dimensional vectors represent
the state of a system for several test cases. These vectors are
then normalized onto the unit sphere. These normalized vectors are
then clustered and each cluster 1is represented by a centroid
vector. This set of centroid vectors then defines the fuzzy rules
of the system.

REF: Kosko, B., Neural Networks for Signal Processing, Prentice
Hall, Englewcod Cliffs, NJ, 1992.

2.4.5 Computed Neural Networks.

Another approach is based on the idea of basis functions combined
with some insight gained from our Phase I research. Our research
has clearly shown that membership functions based on triangles are
general enough to provide near optimal results in this application.
In addition, it is almost certain that the rules and weights for a
fuzzy system can be directly computed. This would provide the big
advantage that training, which is extremely time consuming, would
not be required. In addition, although training images would still
he required, they could be generated by varying the parameters
which cause the most significant errors.

2.5 Manual Rule Generation.

The manual rule generation task was initially one of the greatest
areas of concern. We were worried that we would not be able to

15

'S9|NJI | YSY @Y} JO SUOISIOA 8381y} 8} JO SBAIND
10149 8y} Uo paseq paulwialap sem uonouny diysisquisw [ewundo ayl
‘paindwod a1am suonouny diysiaquiaw 8aiy} Jo sios a1y | g ainbi4

/ /
\\\ J N
N / \ / \
\ Y, N/ \
\ / \ / \ /
- V ___/
) <
// // \
\
\ \
I (N N
jewndo pajewoIny spiozadel |
JeaN Aiseg jeuonipes|

e ybiy

o wnipay

WD Mo

16

‘Julod wie feuly e 8onpoud pue lamsue ayj Ajizznjap 0} pasn Si
awayos Buipiousd a|dwis v "s8jni | YSY 8yl JO SUOISIBA 984y} 8yl
1ybiam 01 moy sulwisiep suonouny diysiaquaw ay| 6 ainbi4

jiodwiy Azzn4 9 jo
opeuls3

Buipionuan Azzn4

 wemoy N\, /S
l
|
D - E__OE:_SS_/I\“\
|
|
¢

o b __/

soleuwll}sJ suoliouny
uiodwiy 1YSY diysiequisy Azzn4

|
|
wyjuobly |
|
f

17

ADusu3 oAnD|OY

Pl L Ol 1% 9 v 4 O
_ . w T 1 _ 1 _ _ T T T T _ T _
-;l..vr-:lIl.l.r¢-/ \\@/ | 0
- 4 \ <4 1
- ~m \\Q / |
/-/ -~ —
<O 4 <
LR ® ;
®\\®\\b\\® LN ,, 1%
Q&l@ll@\.‘@\\\Q\\ a \ | v M.
/./ / 4G Wﬂ
[\ %)
N / - @ 0]
| .5 {0 T
[BPOW YUl UbiH - m- - / 14 3
[SPOW U POIN ~~0 -~ ,, Q =
[SPON U MO — @ \
s
\]
,, il Ol
IS]
- 21

b ybiy puo ‘wnipow ‘moj uo pasng
S|opow ¢ wWod} buiynsead syoduj:Q | 94nbi

18

manual generate rules and membership functions which were gocd
enough. If the manual rules were not good encugh, we would nct have
proven anything. Fortunately, fuzzy systems are rcbust encugh thar
the sub-optimal rules and membership functions (see Figure &) were
nearly as effective as the what was later seen to be the optimal

functions.

<
T

Our approach to generating the rules and membership functions
provides an excellent model for an automated approach. wWe first
assumed the simplest types of rules, namely if <condition>» then
<action> (see Figure 9). The results of all of these rules were

then centroided to produce an aimpoint. The membership functions
were defined by varying parameters of interest and then just
looking at the surfaces produced (see Figure 10).

2.6 Manual Aimpoint Generation.

Initially it was felt that an human operator could provide a good
estimate of the aimpoint by visual inspecticon. We designed & simple
software tool which displays the image as squares of different
shades of grey. The idea being that an operator could examine this
image and extract an aimpoint. This approach failed for two
reasons. First, the resolution of the image was very low - tooc low
to allow an operator to find a reasonable aimpoint. In addition,
there were only three shades ¢f grey to work with - the visual
effect was far from optimal.

2.7 Autonatic Sco 'ing.
Software was written to convert the aimpoints computed into errors.

These errors were then processed through a MathCad program to
produce graphs and to compute RMS values.

19

3.0 STATUS OF ACCOMPLISHMENTS

During this project, a study of the application of fuzzy logic to
the ASAT aimpoint algorithm was performed. The purpose of this
study was to determine if fuzzy logic could be effectively used to
reduce the effects of various error sources - especially glint. At
the completion of this study, we have produced a target simulaticn,
applied fuzzy logic to the simulated images, and analyzed the
results.

3.1 Develop target profiles and intensity maps.

This effort began with a definition of the planar surfaces of the
target. From there a multi-stage software development effort
resulted in programs to: generate a graphics image, translate the
image into sub-pixels, and combine sub-pixels into pixels. During
this process a point spread function was used to blur the image.
Other sources of noise were ignored because it was assumed that the
signal-to-noise ratio would be extremely high during the fina.
phases of the mission. The result of this effort was software
capable of supporting a parametric study of the fuzzy logic
aimpoint algorithm.

3.2 Modify existing fuzzy logic software tool.

Several pieces of software already existed which were useful for
this project.

For the purposes of comparison, it was necessary to implement the
baseline ASAT aimpoint algorithms. Both the "centroid" and the
"extent" algorithms were programmed and evaluated. The "extent"
algorithm was found to be unacceptable for our application. As a
consequence, only the "centroid" algorithm was carried forward for
further evaluation.

The fuzzy 1logic engine was modified to accept the test 1image
formats and was re-coded as a hardwired algorithm. This was
necessary because of the huge amount of processing required for the
image analysis and because of the large number of images generated
and processed.

3.3 Develop display based scoring system.

This objective consisted of two parts: the display and the scoring
system. The display was coded to allow an operator to view the
images and attempt to select an aimpoint. Unfortunately, the
resolution of the images is so low that it rapidly became clear
that an operator was not competitive with evenr the ASAT baseline
algorithms. This effort was abandoned with the resources redirected
into the investigation of automated fuzzy system generation. The
scoring system turned out to be a series of MATHCAD programs which
analyzed and plotted the results.

20

3.4 Collect and analyze performance data.

The process of generating the simulated target images required
almost a hundred hours of computing time. While this did not burn
up much engineering time, it did limit the types of analysis that
we could perform. Because of time constraints, it become necessary
to abandon two equally interesting scenarios: glint off just one
panel, and errors in the a priori estimate of the angle of attack.
After a little analysis, it became obvious that these two scenarios
are almost identical from the point of view of algorithms.

The results of the two panel glint study shows that with glint
uniformly distributed over the range from no glint to maximal
glint, there is approximately a factor of ten reduction in maximum
aimpoint Error. Figures 11 and 12 show a substantial reduction in
aimpoint errors for the near and medium range cases. As might be
expected, the long range case shows considerable problems with both
approaches (see Figure 13).

3.5 Future research and development.

Although fuzzy logic is not commonly used in the United States, it
is very popular in other parts of the world. There is a large body
of research in this area and many topics of potential future
research have been identified. Two of these research topics are of
particular interest: basis functions and hybrid fuzzy logic/neural
network systems.

Basis functions appear to be an excellent way to approach
automating the development of fuzzy systems. It appears to be
relatively easy to compute basis functions automatically. These
computed basis functions have been shown, in our Phase I study, to
be reasonable substitutes for optimal basis functions.

Building hybrid fuzzy logic/neural network systems appear to have
several advantages. These advantages include the possibility of
avoiding the time consuming need to train neural networks. In
addition, expert knowledge, which can easily be mapped into a fuzzy
system, can now be mapped into neural networks.

21

Abisuj aniplay

91l 1A’ Cl o ! 8 @ 14 c
* Ll — T — A L) — L4 T ~ ﬂ
. f-iw,,.,“m“.\.,minz?m B R
l:lm.i»lg\\l.ll.l .\u.\-\ r/i.w\\

o|ny AZZn | pe1pwoiny
oINY AZ2Zn 4 |DUOINIPOI |
ainy Azzn 4 jowndo
oiNY 1VSY

lllmT!I
- \'.... -
]ln@!.l
‘114‘,!411

9&\0\!¢\\?\\?\6\

SJI0U44T OAIND[BY

obupy 0301 : | | 24nbDI 4

O™~ O WL I+ M N — O

N — O O

; ssapiuN

-
]

404U

22

91

ABiouy saD|8Y

1A’ ¢l 0l 8 @ 14 4
f i T " T T T T T J T T T T
lelf‘:l?xnnw-uumlal\s@,/,m.ns@/ ,@T:m\\l xS s
-~ Im I|I-V¢ '. l...vt .(-\ \..\ IIB\\

o|ny| AZzZNn | pRIDWIOINY ---FF--
o|Ny AZzn 4 |DUOIYIPDL] - m- -
ainy Azzn 4 jowndp --e--
SINY IVSV —e—

S1041T DAIID|OY

obuDy PIN g | ©4nDI

Ol

0c

0¢

Ot

1 SS8|lIUN

40Ul

23

ADasug anlD|oy

¥l cl Ol 8 9 14 14 0
| ' I ' i ! 1 ' i ! | ! ! M I v
40
l/ i\l ..\D\-E,\,A) T
—_ /z..k\\\. e nm,/l/lm\\m x; z
17
o|Ny AZzNn 4 p2IDWOINY ---EF-- 1
a|ny Azzn 4 |DUOIIPDA| - m- - 1°
oiNy Azzn4 jpwndp --e-- 1g
oINY IVSV —e—]
101
1C1
14 7l
/ |
181

S10413 BAIID|2Y

obupy 4D 4 ¢ | 8unbI4

10443 SS3}uUN

24

4.0 CONCLUSIONS AND RECOMMENDATIONS
4.1 Conclusions.
4.1.1 Fuzzy logic will reduce maximum error.

The current baseline ASAT aimpoint algorithms do not appear to be
designed to handle glint or errors in the a priori estimates of
angle of attack. Our analysis shows that these baseline algorithms
can be modified to be incorporated into a fuzzy system. In
addition, we have seen that this fuzzy system can reduce the
maximum error in the aimpoint by a significant factor. This factor
will of course depend on the target being attacked.

4.1.2 Fuzzy logic is robust.

Our research showed that fuzzy logic is robust in several different
but important ways. While it is tolerant of uncertainties in the
image under analysis, it is also tolerant of errors in the design
of the fuzzy system. In this case, the error in the design was the
use of sub-optimal membership functions.

4.1.3 Fuzzy logic can be fast.

Our preliminary estimates showed that the real-time part of the
fuzzy system will be quite fast. This results from the fact that
most of the processing would be performed just prior to launch.

4.1.4 Timely development of Fuzzy logic.

For near term projects (e.g. ASAT), it is vitally important to have
the real-time software designed, coded, and tested in the near
future. The real-time part of the fuzzy system code is simple
enough that it could be designed quickly. In addition, the real-
time code could also be designed first, before t*= non real-time
code. This would allow a parallel development effort requiring only

the interface definition.
4.1.5 Automating Fuzzy System Development.

It is possible to automate the development of fuzzy systems. Our
analysis shows that, at least for this application, we will be able
to effectively use certain properties of the underlying problem to
great advantage. Not only are we able to use triangular membership
functions but the membership functions are derived from simple
multi-dimensional surfaces. This means that simple fuzzy rules can
be combined to produce an extremely accurate aimpoint estimate.

4.1.6 Underlying algorithm needs to be continuous.

Fuzzy systems are continuous. This means that inputs that are close
produce outputs that are close. One of the baseline ASAT aimpoint

25

algorithms was found to be discontinuous. This was unacceptable
from our point of view and would probably by undesirable from the
perspective of the ASAT Guidance and Control system.

4.1.7 Target needs to be blurred.

In order to achieve sub-pixel resolution it is necessary to have
significant blurring. Clearly, if all of the target energy 1is
contained within a single pixel, sub-pixel resolution 1is
impossible. The problem with blurring is that it would reduce
acquisition range. While this could possibly lead to a trade-off
during the early design phase, at this point in the ASAT design the
hardware is cast in concert.

4.2 Recommendations.
4.2.1 Need automated development system.

For many important military applications, and some commercial
applications it will be necessary to automate the development of
the fuzzy systems. During missions such as ASAT, there is
insufficient time between selecting a target and launching an
interceptor for the manual design of a fuzzy system. Of course this
comes as no surprise because even the crisp logic rule based system
development will need to be autcmated.

4.2.2 BErrors in angle of attack.

Glint is widely recognized to be an important issue. Perhaps less
widely recognized is the effects of errors in the a priori
estimates of angle of attack. OQOur research shows that even a
relatively small error in angle of attack can result in a serious
reduction in probability of kill. For example, glint has been seen
to cause significant errors. Fortunately, with these errors, the
aimpoint is still contained within the target. Errors in the angle
of attack, especially when combined with glint, on the other hand
can cause the aimpoint to shift completely off of the target
leading to a clean miss.

4.2.3 Computing neural networks.

One of the most serious problems associated with neural networks is
that they need to be trained. Another problem is that once they are
trained it is cften impossible to analyze the connection weights
and derive any understanding of the underlying problem or solution.
Fuzzy logic can help solve both of these problems. Several
researchers have developed one-to-one mappings between certain
classes of fuzzy systems and neural networks. Since these two
representations are equivalent, it becomes possible to use the
benefits of both. Neural networks can be used to design fuzzy
systems through training; fuzzy systems can be designed to directly
compute connection weights for neural networks. Fuzzy systems have

26

the advantage that they are often extremely intuitive and therefore
it could be relatively easy to determine the physical meaning of
neural network connection weights by looking at them in a fuzzy
context.

4.2.4 Investigate hybrid systems.

Fuzzy systems also have the advantage that they interface naturally
with both neural networks and crisp logic rule-based systems. This
suggests possibly forming an integrated package which includes an
expert system for operator input, an neural network for complex
analog data, and a fuzzy system to integrate or fuse the system.

27

5.0 POTENTIAL FOR COMMERCIALIZATION

There is a tremendous potential for commercializing fuzzy logic in
the United States. In Japan, fuzzy logic has been in use for years,
and it has been successfully applied to thousands of consumer
products. Successful commercial applications include controlling
water levels in washing machines, navigating river barges, and
smoothly stopping high speed trains.

5.1 Selling aimpoint algorithms.

Aimpoint algorithms are important to several projects at the
Strategic Defense Command e.g. GBI, THAADS, ERINT, DEW, E-I,
PATRIOT, GSTS and LADAR. Many programs are having problems
identifying aimpoint algorithms, and this appears to be a serious
factor influencing probability of kill. In addition, many
applications require very high degrees of accuracy in their
aimpoint algorithms. The results of this study show a factor of ten
reduczion in maximum alimpoint errors resulting from the use of
fuzzy logic.

5.2 Selling automated development tools.

Automatic tools for generating fuzzy systems could serve a critical
need in the military. In the commercial world, automated tools
could reduce the skill levels required of fuzzy system designers;
this reduction in skill level would translate into potential
increases in productivity and big savings. In addition, third party
vendors (TOGAI Infralogic) are interested in the possibility of
combining their hardware with an automated fuzzy system development
tool.

5.3 Selling fuzzy logic and neural network expertise.

Fuzzy logic is relatively unknown in the United States, and fuzzy
system expertise is in demand. Since starting this contract, we
have been asked to apply our fuzzy logic and neural network
expertise to such problems as passive ranging (GBI), active damping
control systems (BE), radar multipath {(MTAS), and vehicle
classification systems (DOT).

28

Appendix A - Software listings

/*
filename: A_RULES
This program accepts a pixel map and computes
the ASAT aim point rules.

*/

include <math.h>

include <graph.h>

include "worlddr.h®

include <stdio.h>

include "plot3d.h®

¥ include "hpplot.h"

include "stdlib.h"

FILE *pixelmap; /* pixel map */
FILE *aptrules; /* asat aimpoint rules */
long map{10][10}1;

char name0[20]; /* test file name */
char namel [207]; /* pixel map file name * /
char name2 [20] ; /* asat aimpoint file name */
int num_maps;

int map_no;

int api,apj;

int aptop, apbottom;

int apright, apleft;

long maxsum, minsum;

int top,bottom, right, left, temp;
float rhoc, rhor;

float cenc, cenr;

long jsum, isum, tsum;

float jcen, icen;

/* Compute the ASAT intensity centroid aimpoint rules */
void Centroid({void)

{
int jr,ic;

isum = 0;
jsum = 0;
tsum = 0;

for(jr=0;3r<10;jr++) {
for(ic=0;1c<10;ic++) {
temp = map(jr]lic];
if(temp !'= 0) {
jsum += temp*jr;
isum += temp*ic;
tsum += temp;

1f{tsum > 0) {

jcen = ({float)jsum)/{((float)tsum);
icen = {({(float)isum)/{(float)tsum);
}
else {
jcen = -1.0;
icen = -1.0;

}

/* convert aimpoint rules to pixel coordinates */

jcen = 22.0 + (jcen-2.0)*40.0;

icen = 7.0 + {icen) *80.0;

cenc = ({float)api) - icen;

cenr = ((float)apj) - jcen;

fprintf(aptrules," cenc = %¢f cenr = %f\n",cenc,cenr);

}

/* compute the ASAT extent aimpoint rules */
void Put_Up_box (void)

{

int jr,ic;

top = 10;
bottom = -1;
right = -1;
left = 10;

for(jr=0;jr<10;3r++) {
for{(ic=0;1ic<10;ic++) {
temp = map[jr][ic];
if(temp != 0) {

i1f(jr<top) top = jr,
if(jr>bottom) bottom = jr;
if(ic<left) left = ic;
if(ic>right) right = ic;

}

/* convert aimpoint rules to pixel coordinates */

aptop = 22 + (top-2) *40;
apbottom = 21 + (bottom-1) *40;
apleft = 7 + left *80;
apright 6 + (right+1) *80;
rhoc = float) (api - apleft))/((float) (apright - apleft));

((
rhor = ((float) (apj - aptop))/{(float) (apbottom - aptop)):
fprintf (aptrules, "\n rhoc = %f rhor = %f", rhoc, rhor);

/* read pixel map */

void Load_Map (void)
{
int jr,ic;
fscaunf (pixelmap, * %d map number', &ia@p_no) ;
fscanf (pixelmap, " %4 %d aimpoint*, &api, &apj);
for ;r=0;3r<l0;jr++) {
for(ic=0;1ic<10;ic++) { i
fscanf (pixelmap," %d4",&map{jr]{ic]l}; 1
}
fscanf (pixelmap, "\n"};

}

fscanf (pixelmap, " %1d %1d maxsum and minsum", &maxsum, &minsum) ;
}
void main(int argc,char *argvil){
int im;

char s{80];
/* read in file —ames */
if (argc<3)

printf (“This program requires a PMP anda a ARL");
printf(" file name in the command line.\n");

getch();
exit (0);
}
strcpy (namel .argv([1l]);
if ((pixelmap = fopen(namel,"r")) == NULL) {
print’ ("Could not open fine grain pixel map (%s)\n",n&"21);
getch();
exit (0);
}
strcpy (name2,argv(2]);
if((aptrules = fopen(name’, "w")) == NULL) {
printf (*Could not open asat aimpoint rules (%s)\n",name2);
getch();
exit (0);

}

fscanf (pixelmap, "filename %s",s):
fprintf(aptrules, "filename %s\n",name2) ;

fscanf (pixelmap, " %d number of maps“, &num_maps) ;

/* compute ASAT aimpoint rules */

for(im=0; im<num_maps;im++) {
Load_Map() ;
Put_Up_Box () ;
Centroid();

}

fclose(pixelmap) ;

/*

filename:

C_FUZ72Y

This program accepts a pixel map and computes

the fuzzy aim points.

/*
/*
/*
/‘k
/'k
/*

/*
/'k
/*
/*

pixel map
low aimpoint rules

medium aimpoint rules

high aimpoint rules
fzy aimpoint rules
fuzzy aimpoints

test file name
pixel map file name

*/
>/
>/
*/
*/
*/

*/

*/

asat aimpoint rule name */

asat aimpoint file name */

*/

include <math.h>

include <graph.h>

include *worlddr.h"
include <stdio.h>

include *“plot3d.h"

include "hpplot.h*

include "stdlib.h"
FILE *pixelmap:
FILE *lowrules;
FILE *medrules;
FILE *highrules;
FILE *fzyrules;
FILE *aimpts;

long map{10][10];
char name({20];
char namel [20];
char name2 [20] ;
char name3 [20];

int num_maps ;

int map_no;

int api,apj;

int aptop, apbottom;
int apright,apleft;
long maxsum, minsum;
int top, bottom, right, left, temp;
float rhoc, rhor;

float lcenc, lcenr,mcenr,mcenc, hcenr, hcenc;
long jsum, isum, tsum;
float jcen,icen;

float fapi, fapi;
float rho, rhot, lrho,mrho, hrho;

/* compute FUZZY aimpoint rules */

void
{
int
int

Fuzzy (void)

jr,ic;

flag;
isum
Jsum
tsum

for(jr=0;3r<l0;Jr++)

woon
O

for(ic=0;1c<10;ic++)

temp =

if({temp != 0)

{

{

{

map(Jr] [ic];

jsum += temp*3jr:
isum += temp*ic;
tsum += temp;

}
}
if(tsum > 0) {
jcen = ((float)jsum)/((float)tsum);
icen = ((float)isum)/((float)tsum);
}
else {
jcen = -1.0;
icen = -1.0
}
jcen = 22.0 + (jcen-2.0)%*40.0;
icen = 7.0 + {icen) *80.0;
rho =

((float)tsum- (float)minsum) /((float)maxsum- (float)minsum) ;
/* apply fuzzy rule number "flag® */
flag = 2;
switch({flag) ({
case 0: /* traditional rules */
1f({rho<=0.0) {

lrho = 1.0;
mrho = 0.0;
hrho = 0.0;

}
if({0.00<rho) && (rho<=0.10)) {

lrho = 1.0 - 10.0*rho;
mrho = 10.0*rho;
hrho = 0.0;
}
if((0.10<rho)&& (rho<=0.30)) {
lrho = 0.0;
mrho = 1.0;
hrho = 0.0;
}
1£((0.30<rho) &&(rho<=0.50)) {
lrho = 0.0;
mrho = 1.0 - 5.0*(rho-0.30);
hrho = 5.0*(rho-0.30};
}
1if{0.50<rho) {
lrho = 0.0;
mrho = 0.0;
hrho = 1.0;
}
break;

case 1: /* optimal rule */
if(rho<=0.0) {
lrho = 1.0;

mrho
hrho

i n

0.0;

0.0;

}

1f((0.00<rho)&&(rho<=0.25}) {

lrho = 1.0 - 4.0*rho;
mrho = 4 .0*rho;
hrho = 0.0;
}
1f({(0.25<rho) && (rho<«<=0.50)) {
lrho = 0.0;
mrho = 1.0 - 4.0*({rho-0.25};
hrho = 4.0*{rho-0.25);
}
1f£(0.50<rho} {
lrho = 0.0;
mrho = 0.0;
nrho = 1.0;
1
break;

case 2: /* automated rule */
1f({rho<=0.0) {

lrhe = 1.0;
mrho = 0.0;
hrho = 0.0;

}
1£((0.00<rho)&&(rho<=0.30)) {

rhot = (0.30 - rho}*(0.30 - rho)/0.09;
lrho = rhot;

mrho = 1.0 - rhot;

hrho = 0.0;

}
1f((0.30<rho)&&(rho<=0.50)) {
rhot (0.50 - rho)*(0.50 - rho)/0.04;
1rho 0.0;
mrho rhot ;
hrho 1.0 - rhot;

L B |

}

fapi = icen + lrho*lcenc+mrho*mcenc+hrho*hcenc;
fapj = jcen + lrho*lcenr+mrho*mcenr+hrho*hcenr;
fprintf (aimpts,® %@ %4 %f %f \n\n",api,apj,fapi,fapj);
}
/* load pixel map */
void Load_Map (void)
{

int jr.ic;

%$f cenr g,

tl

fscanf(lowrules, " rhoc = %f rhor = %f cenc =
&rhoc, &rhor, &lcenc, &lcenr} ;
fscanf (medrules,* rhoc = %f rhor = %f cenc = %f cenr = %f°*,
&rhoc, &rhor, &mcenc, &mcenr) ;
fscanf (highrules, " rhoc = %f rhor = %f cenc = %f cenr = %f",
&rhoc, &rhor, &hcenc, &hcenr) ;
fscanf (pixelmap, * %d map number", &map_no) ;
fscanf (pixelmap, " %d %d aimpoint", &api, &apj);
for(jr=0;jr<10;jr++) {
for(ic=0;1c<10;1c++) {
fscanf (pixelmap, * %d4d",&map(jr]{icl);
}

fscanf (pixelmap, "\n") ;

}
fscanf (pixelmap, ' %$1d %1d maxsum and minsum", &maxsum, &minsum) ;

}
void main{int argc,char *argv(]){
int im;
char s[80]; /* read in file names */
if (arge<?) {
printf (*This program requires an FRL, PMP, FPT and a lmh APT");
printf (" file name in the command line.\n");
getch();
exit (0);
}
strepy (namel,argv(1l]);

if((fzyrules = fopen(namel,"r")) == NULL) {
printf (“Could not open the fuzzy aimpoint rules (%s)\n",namel);

getch(};
exit (0);

}

strcpy (name2,argvi(2]);

if((pixelmap = fopen{name2,"r")}) == NULL) {
printf ("Could not open test pixel map (%s)\n",name2);
getch();
exit (0);

}

strcpy (name3,argv(3]);

if((aimpts = fopen(name3, "w")) == NULL) ({
printf ("Could not open fuzzy aimpoint file (%s)\n",name3);
getch{();
exit (0) ;

}
strcpy (namel,argvi[4]);

if ({lowrules = fopen(name3,"r")) == NULL) {
printf ("Could not open lo asat aimpoint file (%s)\n",namel);
getch();
exit (0) ;

strcpy {name3,argv[5]);

if ({medrules = fopen(namel,“r")) == NULL) {
printf ("Could not open med asat aimpoint file (%s)\n",namel);
getch();
exit (0);

}
strcpy {name3,argv([6]);

if ((highrules = fopen(name3, *r")) == NULL) ({
printf("Could not open hi asat aimpoint file (%s)\n",name3);
getch();
exit (0);
}

fprintf (aimpts, "filename %s\n",name3);
fscanf (pixelmap, "*filename %s",s);
fscanf (lowrules, "filename %s",s});
fscanf (medrules, "filename %s",s);
fscanf (highrules, "filename %s",s);
fscanf (pixelmap, * %d number of maps", &num_maps) ;
fprintf(aimpts, "\n %d number of maps\n\n",num_maps) ;
/* compute fuzzy aimpoint rules */
for (im=0;im<num_maps;im++) {
Load_Map () ;
Fuzzy () ;
}
fclose(pixelmap) ;

/*
filename: DISP
This program accepts a test pixel map and displays 1it.

include <math.h>
include <graph.h>
include "worlddr.h"
include <stdio.h>
include "plot3d.h”
include *hpplot.h*
include "stdlib.h"

3 3t M 3k 3

FILE *pixelmap;
char name(0[20];
char namel [20];
long map[10][107;
char title[80];

int num_maps;

int map_no;

int api,apj;

long maxsum,minsum;
/* display pixel map */
void DisplaylMap (void)

{
int i,3,1i1,31;
int row, col,color;
float temp;
int templ, temp2, temp3;
int colornum;
for(3=0;3<10;j++) {
for{i=0;i<10;1++) {
temp = (float) mapljl[i];
temp = temp/3200.0;
colornum = 1;
templ = {(int) ((0.34 - 0.33*(temp - 5.0)/5.0)*(32767.0));
temp2 = {int) ((1.00 - 0.33*(temp - 5.0)/5.0)*(32767.0));
if(temp<=5.0) {
colornum = 0;
templ = (int) ((1.0 - 0.66*temp/5.0)*(32767.0));
}
else {
if (temp>=10.) {
colornum = 2;
temp2 = {int) ((0.33 + 0.66*(temp - 10.0)/5.0)*(32767.0));

}
}
/* color each pixel */
row = 1*56;
for(il=0;11<56;11++) {
TOW++;
col = 3*28+15;

A - 10

for(jl1=0;31<28;jl++) f
col++;
temp3 = rand(); /* select random mix of */
/* colors to represent intensity */
switch(colornum)

case 0:
if (temp3<templ) _setcolor(0);
else _setcolor(7);
break;
case 1:
1f (temp3<templ) _setcolor(0);
else {
if(temp3>temp2) _setcolor(l5);
else _setcolor(7);
}
break;
case 2:
if (temp3<temp2) _setcolor(1l5);
else _setcolor(7);
break;
}
_setpixel (row,col);
}
}

}
}
void LoadMap (void)
{ /* read in pixel map */
int jx,ic;

fscanf (pixelmap, " %d map number", &map_no) ;
fscanf (pixelmap, " %d %d aimpoint", &api, &apj);
for(jr=0;jr<10;jr++) {
for{ic=0;ic<10;1ic++) {
fscanf (pixelmap, " %d",&map(ir] [ic]l);
}

fscanf (pixelmap, "\n");
}
fscanf (pixelmap, * %$1d %1d maxsum and minsum", &maxsum, &minsum) ;
}
void main(int argc,char *argv([]) ({
int im;
char s[80); /* read in file names */
if (argc<2) {
printf ("This program requires a test");
printf (" file name in the command line\n");
getch();
exit (0);
}
strcpy (namel,argv(1l]);
if((pixelmap = fopen(namel,"r*)) == NULL) {

A~ 11

printf ("Could not open pixel map (%s)\n",namel);
getch();
exit (0);

}

_setvideomode (_ERESCOLOR) ;

fscanf (pixelmap, "filename %s",title);

fscanf (pixelmap, " %d number of maps", &num_maps) ;

for (im=0; im<num_maps;im++) { /* display images */

LoadMap () ;

DisplayMap() ;

getch();

_clearscreen (_GVIEWPORT) ;
}
CloseSEGraphics ()} ;

fclose(pixelmap);

/*
filename: MK_ASAT
This program accepts a pixel map and computes
the ASAT aim points and errors for plotting.

*/

include <math.h>

include <graph.h>

include "worlddr.h®

include <stdio.h>

include "plot3d.h®

include "hpplot.h"

include "stdlib.h"

FILE *pixelmap; /* pixel map */
FILE *aptrules; /* asat aimpoint rules */
FILE *allpts; /* all aimpoints */
long map{10] [10];

char name0 [80] ; /* test file name */
char namel [80]; /* pixel map f£ile name */
char name2 [801]; /* asat aimpoint rule name */
char name3 [80]; /* asat aimpoint file name */
char name4 [(20]; /* all aimpoint file name */
int num_maps;

int map_no;

int api,apij;

int aptop, apbottom;

int apright,apleft;

long maxsum, minsum;

int top,bottom, right, left, temp;
float rhoc, rhor, cenc, cenr;

long jsum, isum, tsum;

float jcen,icen;

float fapi, fapj;

float erout [101;

float Jjbc,ibr, jcc,icr,erb,erc;
double dcc¢,dcr,dpc, dpr, dnm;

double dtempl,dtemp2,dtemp3;

/* compute the intensity centroid and compute aimpoint */
void Centroid(int num_maps, int 1im)
{

int jr,ic;

isum = 0;
jsum = 0;
tsum = 0;

for{(jr=0;3r<10;jr++) {
for(ic=0;1c<10;ic++) {
temp = map(jr][ic];
if(temp !'= 0) {
jsum += temp*jr;
isum += temp*ic;

A - 13

tsum += temp;

}
}
if{tsum > 0) {
jecen = ((float)jsum)/((float)tsum);
icen = {{float)isum)/({float)tsum);
}
else {
jcen = -1.0;
icen = -1.0;

} /* convert to pixel coordinates */
jcen = 22.0 + (jcen-2.0)*40.0;

icen = 7.0 + (icen) *80.0;
dcc = icen + cenc;
dcr = jcen + cenr;
dnm = (float) (num_maps - im};
dpc = {(double) api;
dpr = {(double) apj;

dtempl = pow((dpr-dcr)*dnm,2.0);
dtemp2 = pow((dpc-dcc)*dnm,2.0);
dtemp3 = dtempl + dtemp2;
erc = (float) pow{dtemp3,0.5);
erout [im] = erc;

}

void Load_Map (void)

{ /* read pixel map */

int jr,ic;

I

fscanf (aptrules," rhoc = %f rhor = %f cenc = %f cenr gf",
&rhoc, &rhor, &cenc, &cenr) ;
fscanf (pixelmap, " %d map number", &map_no) ;
fscanf (pixelmap, " %d %d aimpoint', &api, &apj);
for(jr=0;jr<10;jr++) {
for{ic=0;1c<10;ic++) {
fscanf {pixelmap," %d",&mapljr]lic]l);
}
fscanf (pixelmap, "\n");
}
fscanf (pixelmap, " %$1d %1d maxsum and minsum", &maxsum, &minsum) ;
}
veoid main(int argc,char *argv(]){
int im; /* read in file names */
char s{801};
1f(arge<3) {
printf ("This program requires an ARL, and PMP");
printf(" file name in the command line.\n");
getch();
exit{(0);
}
strcpy{namel,argv(1l]);

A - 14

if ({aptrules = fopen(namel,"r")) == NULL) ({

printf{"Could not open the asat aimpoint rules (%s)\n",namel);

getch();
exit (0);
}
strepy {name2,argv[2]);

if((pixelmap = fopen{name2,"r"))} == NULL) ({
printf (*Could not open test pixel map (%s)\n",namel);
getch();
exit {0);
}
if({allpts = fopen("g:temp2.tmp", "w")) == NULL) {
printf ("Could not open temporary file\n");
getch{();
exit {(0);

}
fscanf (pixelmap, "filename %s",s);
fscanf (aptrules, "filename %s',s);

fscanf (pixelmap, " %d number of maps", &num_maps) ;

for (im=0; im<num_maps;im++) { /* compute ASAT aimpoint errors */
Load_Map();
Centroid(num_maps, im) ;

}

for (im=num maps-1;im>=0;im--) {
fprintf(allpts,* %f£",eroutim]);

}

fprintf (allpts, "\n\n");

A - 15

/*
filename: MK_FRN
This program accepts the fuzzy aimpoint lists,
computes the errors and formats the data
for plotting with mathcad.

*/

include <math.h>

include <graph.h>

include "worlddr.h"

include <stdio.h>

include "plot3d.h"

include "hpplot.h"

include "stdlib.h*

FILE *aimpts; /* asat aimpoints */
FILE *fzypts; /* fuzzy aimpoints */
FILE *manpts; /* manual aimpoints */
FILE *allpts; /* all aimpoints */
long map[10] [10];

char name0[20]; /* test file name */
char namel [20]; /* asat aimpoint file name */
char name2 [20] ; /* fuzzy aimpolint file name */
char name3 [20]; /* manual aimpoint file name */
char named [20]; /* all aimpoint file name */
int num_maps;

int map_no;

float erout [201];

float Jjbc,ibr, jcc,icr,erb,erc;
double dcc, dcr, dpc, dpr, dnm;
double dtempl,dtemp2, dtemp3;

void ComputeError (int maps,int im)
{ /* compute fuzzy aimpoint errors */
int jpc, ipr;

dnm = (float) (maps - im);

fscanf (aimpts, " %d %d %f %f",&jpc, &ipr,&jcc, &icr);

dcc = (double) jcc;
dpc = (double) jpc;
dcr = (double) icr;
dpr = (double) ipr;

dtempl = pow({dpr-dcr)*dnm,2.0);
dtemp2 = pow((dpc-dcc) *dnm, 2.0) ;
dtemp3 = dtempl + dtemp2;

erc = (float) pow(dtemp3,0.5);
erout [im] = erc;

}
void main(int argc,char *argvi{]){
int im; /* read in file names */

A ~ 16

char s{80};
if(argc<2) |
printf("This program requires an FPT file in");
printf (" the command line.\n");

getch();
exit (0);

}

strcpy (namel,argvil]);

if{({aimpts = fopen(namel,"r")) == NULL} {
printf ("Could not open fuzzy aimpoints file (%$s)\n",namel) ;
getch();
exit (0);

}

if((allpts = fopen("g:temp2.tmp", *w*)) == NULL)
printf ("Could not open temporary file\n');
getch();
exit (0);

}

fscanf (aimpts, “filename %s",namel);
fscanf (aimpts, * %4 number of maps", &num_maps) ;
for (im=0; im<num_maps; im++) {
ComputeError (num_maps, im) ;
}

for (im=num_maps-1;im>=0;im--) {
fprintf(allpts," $f",erout{im]);
}

fprintf(allpts, "\n\n");

fflush(aimpts);
fclose(aimpts);

A - 17

/*
filename: MK_MAP
This program accepts a test target description
file and outputs test pixel maps.
*/
#define MAX_ IMAGES 100
#define MAX_SURFACES 10
include <math.h>
include <graph.h>
include “worliddr.h"
include <stdio.h>
include "plot3d.h"
include "hpplot.h"

H oo e 3 oon

int err,i,7J;
int color;
struct WorldRect wr;

floatc X, ¥.:2;

float rot [MAX_IMAGES], xrot,yrot, zrot;
int axn[MAX*IMAGES],Colorno[MAX_SURFACES][MAX~IMAGES};
int fcont [MAX_IMAGES] ;

float pl4] (3] [MAX_SURFACES];
float apx,apy.apz;

int api,apj;

int no_images, no_surfaces,no_~frames;
int old_f_cnt, frame_cnt;
long tempsum[56] [56];
float tempspread[30] (80];
FILE *tdffile;

FILE *pixelmap;

FILE *noisemodel ;

char name([20];

char namel[20];

char name2 [20];

char name?[20];

float coefs'3];

void DJrawAndSaveAimPoint (void) {
struct point3D pv([5];

int i,j; /* draw aimpoint of target */
pvi0].x = apx;
pv([0].y = apy;
pvill.z = apz;
pvil].x = apx + 0.05;
pvil].y = apy:
pv{l].z = apz;
pvi2].x = apx + 0.05;
pvi2]l.y = apy + 0.05;
pvi2].z = apz;
pv(3].x = apx;
pv(3]l.y = apy + 0.05;

A - 18

pvi3l.z = apz;
pvid] .x = apx;
pv(4].y = apy;
pvid] .z = apz;

SelectColor(l);
PolyFill3D{pv,1,1,5);
api = -1;
apj = -1;
for(i=0;1<560;1++)
for(3=0;3<280;3++) {
if (_getpixel(i,j)==1) {

api = 1i;
apl = J;
break;

}
}
if(api!=-1) break;
}
}
veid DrawTarget (int image_no) {
struct point3D pvi{5];
int isf,ipt;
/* draw image of target */
for(isf=0;isf<no_surfaces;isf++) (
for (ipt=0;ipt<4d;ipt++) {

pviipt].x = p{ipt] (0] [1sf];
pviipt].y = pliptl1 (1] [isf];
pviipt]l.z = plipt] (2] [isf];

}

pvi4].x = p{0}[0][1isf];

pvid4l.y = pl0][1][isf];

pvi4].z = p[0][2]{isf];

SelectColor{colorno(isf] [image_no]l);
PolyFill3D{(pv,1,colorno[isf] [1mage_no]},5);
}

}

void LoadTargets{void)

{ /* read target description file */

int im, 1is, 1ip;

int image, surface;

fscanf(tdffile, " %d number of surfaces",&no_surfaces);
for(is=0;is<no_surfaces;is++) {
for(ip=0;ip<4;ip++) {
fscanf (tdffile," %f %f %f",
&plipl] (0] [is],&plip] (1) [1s],&plipl[2])([1s5]);
}
fscanf (tdffile, " %f %f %f aimpoint", &apx, &apy,&apz):;

A - 19

fscanf{tdffile," %f %f %f xrot yrot zrot®,&xrot,&yrot, &zrot);
WorldRotatel3 {xrot,0) ;
WorldRotateld {yrot,1l);
WorldRotate3d {zrot, 2);

fscanf(tdffile, " %4 number of frames", &no_frames);
fprintf (pixelmap, "\n%d number of maps\n*,no_~frames);
fscanf(tdffile, " %4 number of 1mages",&no_images);

for(im=0;im<no_images; im++) {
fscanf (tdffile," %4 %f %d %d image rotation axes fcount",
&image, &rot [im], &axn[im],&fcnt[im]);
for(is=0;1is<no_surfaces;is++) {
fscanf(tdffile," %4 %d surface color", &surface,&colorno{isi [im]});
}
}
}
void PSF(int rl,int cl,int r2,int c2,float coef)
{ /* point spread function */
1f((r2>=0)&&(r2<56)&&(c2>=0)&&(c2<56))
tempspread{rl] [cl)+=coef*{(float) tempsum|[r2][c2});
}

void SaveMap{int image_no)
{ /* compute and save pixel map */
int 1c01,jr01,1c02,3r02,1c03,3x03;
long sum,maxsum,minsum;
int Jrow01l,icol0l1,jrow02,icol02;
int row,col,pix;
fprintf (pixelmap, "\n%d map number\n", image_no) ;
fprintf (pixelmap, "\n%d %4 aimpoint\n\n",api,apj):
maxsum = 0;
minsum = 0;
for(jr01=0;3r01<7;jr01l++) {
for(ic01=0;1¢c01<7;1c01l++)
for(ic02=0;1ic02<8;ic02++) {
for(jr02=0;3jr02<8;3r02++) {
sum = 0;
for(ic03=0;1c03<10;ic03++) {
for{(jr03=0;7103<5;3r03++) {

col = (1c01*8+1c02)*10+1c03+0 +7;
row = (3r01*8+3jr02)*5 +3jr03+15 +7;
pix = _getpixel(col,row);

1f(pix > 0) {
sum += pPix;
maxsum += 15;
minsum += 1;

A - 20

tempsum[jr01*8+3r02] [1c01*8+1c02] = sum;

}
}
for{(jr01=0;3r01<10;3jr0l++) |
for(ic01=0;1c01<10;1ic0l++) {
for(ic02=0;1c02<8;1c02++) |
for(jr02=0;3r02<8;3r02++) {
1co0l0l = 1ic01*8+ic02;
jrow0l = jr01*8+3r02;
tempspread(jrow(l] [icol0l] = O;
for(i1c03=-4;1c03<4;1c03++) {
for(jr03=-4;3r03<4;3jr03++) {
jrow(2 = jrow(01-16+3r03;
icol02 = icolOl+ic03;
PSF{jrow01l, 1col0l, jrowl2 ,icol02 ,coefs[0])
PSF(jrow0l,icol01l, jrow02-8,icol02 ,coefs[1]
PSF{jrow01l,1col01l, jrow02,1col02-8 ,coefs|[l
PSF{(jrow(0l,icol0l,jrow02+8,icol02 ,coefs|l
PSF(jrow(l,icol0l, jrow02, icol02+8 ,coefs]|1
PSF(jrow01l, icol01l, jrow02-8,1ico0l02-8,coefs|[2
PSF(jrow0i,icol0l, jrow02-8,1c0l02+8,coefs[2
PSF{jrow0l,1ico0l0l, jrow02+8,icol02-8,coefs (2
PSF{jrow01l, icol0l, jrow02+8,icol02+8,coefs[2

}
}

) ;
])I
1)
1)
1)
1)
1)
1)

}
}
for(3r01=0;3jr01<10;3r01++) {
for(ic01=0;1ic01<10;ic0l++) {
sum = 0;
for(1c02=0;1c02<8;1c02++) {
for(jr02=0;3r02<8;3r02++) {

sum += (int)
floor(tempspread(jr01*8+3jr02]) [1c01*8+1c02]+0.5);
}
}
sum = sum/64;
fprintf (pixelmap, "%$51d *, sum);
}

fprintf (pixelmap, "\n");
}
fprintf (pixelmap, "\n%51d $51d maxsum and minsum\n", maxsum, minsum) ;
}
void main(int argc,char *argvi}) {
int im,ifc;
float scale; /* read in file names */
if(argc<d) {
printf ("This program requires a .TDF, .PMP, and .NSE");

A - 21

printf(" file in the command line\n*);

{

getch();
exit (0);

}

strcpy (namel,argv(l]);

if{(tdffile = fopen(namel,"r")) == NULL) {

printf ("Could not open test target description file (%s)\n*,namel);

getch();
exit(0);

}

strcpy (name2,argv(2]);

if ((pixelmap = fopen(name2, "w")) == NULL) {
printf("Could not open pixel map %s\n",namel);
getch();
exit (0} ;

}

strcpy (name3,argv(3]);

if ((noisemodel = fopen(name3,"r")) == NULL) ({
printf (*Could not open noise model %s\n",name3);
getch();
exit (0);

}

fscanf(tdffile,*filename %s",namel3);
fscanf {(noisemodel, "filename %s",namel);
fscanf(noisemodel, " %f %f %f",&coefs[0], &coefs[l], &coefs[2]);
fprintf (pixelmap, "filename %s\n",namel);
tInit3(); /* set up graphics */
Init3D(6);
SetWorldCoordinates(-10.0,-10.0,10.0,10.0);
LoadTargets () ;
frame_cnt = 0;
old_f_cnt = 1;
if(no_frames > 0) {
scale = (1.0/(flcat) no_frames);
WorldScalel (scale,scale, scale);
for (im = 0; im < no_images; im++) {
for(ifc = 0; ifc < fentlim]; ifc++) {
frame_cnt++;
scale = ((float)frame_cnt/(float)old_f_cnt);
WorldScale3 {scale, scale,scale);
WorldRotate3 (rot[im],axn{im]);
if (frame_cnt <= no_frames) {
_Clearscreen(_GVIEWPORT) ;
DrawAndSaveAimPoint {) ;
_clearscreen(_GVIEWPORT) ;
DrawTarget (im) ;
add_noise();
SaveMap (frame_cnt) ;
}
cld_f_cnt = frame_cnt;

A - 22

}
}
else printf(*error - number of frames = 0\n");
Close3DGraphics () ;
fclose(tdffile);
fclose(pixelmap) ;

A - 23

/*
filename: P_AIMPTS
This program accepts an aimpoint list and
computes the errors for plotting.

*/

include <math.h>

include <graph.h>

include "worlddr.h"

include <stdio.h>

include "plot3d.h*

include "“hpplot.h"

¥ include "stdlib.h"

FILE *aimpts; /* asat aimpoints */
FILE *fzypts; /* fuzzy aimpoints */
FILE *manpts; /* manual aimpoints */
FILE *allpts; /* all aimpoints */
long map[(10][(10];

char name([20]; /* test file name */
char namel[20]; /* asat aimpoint file name */
char name2[207]; /* fuzzy aimpoint file name */
char name3 [20]; /* manual aimpoint file name */
char named [20] ; /* all aimpoint file name */
int num_maps;

int map_no;

float erout (107 (101 ;

void

{ /* compute ASAT aimpoint errors */

int
floa
doub

ComputeError{int maps, int im)

ipc, ipr;
t Jbc,ibr,jcc,icr,erb,erc;
le dbc,dbr,dcc,decr,dpc, dpr, dnm;

double dtempl,dtemp2,dtemp3;

fscanf (aimpts, * %d %4 %f %f %f %f",&jpc, &ipr,&jbc, &ibr, &jcc, &icr);

dnm = {(float) (maps - im);

dbc = (double) jbc;
dcc = (double) jcc;
dpc = {(double) jpc:
dbr = (double) ibr;
dcr = {(double) icr;
dpr = {(double) ipr;

dtempl = pow{ (dpr-dbr)*dnm,2.0);
dtemp2 = pow((dpc-dbc)*dnm,2.0);
dtempl = dtempl + dtemp?2;

erb = (float) pow(dtemp3,0.5);
dtempl pow({dpr-dcr)*dnm, 2.0) ;
dtemp2 pow((dpc~-dcc) *dnm, 2.0) ;
dtemp3 dtempl + dtemp?2;

erc = (float) pow(dtemp3,0.5);
erout [im} {0] = erb;

nonon

A - 24

erout {im] [1] = erc;

}
void main{int argc,char *argv[]){
int im; /* read in file name */
char s[80];
if(arge<l) |
printf ("This program requires a test");
printf(* file name in the command line.\n");
getch() ;
exit (0);
}
strcpy (namel,argvi{l]);
if ((aimpts = fopen(namel, "r")) == NULL) {
printf (*"Could not open asat aimpoint file (%s)\n",namel);
getch();
exit (0);
}
strcpy (name2, argv(2});

if((allpts = fopen(name2,"w")) == NULL) {
printf ("Could not open all aimpoint file (%s)\n",name4) ;
getch();
exit (0);

}
fscanf (aimpts, "filename %s",s);
fscanf (aimpts, " %d number of maps*, &num_maps) ;
for (im=0;im<num_maps;im++) {
ComputeError (num_maps, im) ;
} /* compute ASAT aimpoint errors */
for{im=num_maps-1;im>=0;im--) {
fprintf(allpts, " %f FEf\n\n",erout[im] [0],erout [im] [1]);

}

A - 25

/*
filename: SHOW
This program accepts a target description
file and outputs image.
*/
#define MAX_IMAGES 100
#deflne MAX_SURFACES 10
include <math.h>
include <graph.h>
include "worlddr.h*"
include <stdio.h>
include "plot3d.h"
include "hpplot.h"

int err,i,J:
int color;
struct WorldRect wr;

float X,¥Y,2;
float apx,apy.apz;

float rot [MAX_IMAGES], xrot,yrot, zrot;

int axn [MAX_IMAGES], colorno[MAX_SURFACES] [MAX_IMAGES];
int fent [MAX_IMAGES] ;

float pl4] [3] [MAX_SURFACES];

int no_images, no_surfaces,no_frames;

int cld_£f_cnt, frame_cnt;

FILE *tdffile;

char name0[20];

char namel [20];

void add_noise{void)
{

}
void DrawTarget (int no_surf, int image_no, int frame_no) {
struct point3D pvI([5];
int isf, ipt;
/* draw image of target */
for(icf=C;i~frrnn_surf;isf+:} {
for(ipt=0;ipt<4;ipt++) {

return;

pviipt].x = plipt] (0] [isf];
pviipt].y = plipt][1][isf];
pviiptl.z = plipt][2])[isf];

}

pvi4].x = p{0][0] [1isf];

pv{4].y = pl0} (1] [isf];

pvid4]l.z = p[0}[2])[isf];

SelectColor{colorno[isf] [image_nol);
PolyFill3D(pv,1l,colorno(isf] {image_no],5);

A - 26

void LoadTargets(void)

{ /* read target description file */
int im, is,1ip;

int image, surface;

char title([80];

fscanf (tdffile, "filename %s\n",title);
fscanf(tdffile, "%d number of surfaces\n", &no_surfaces);

for(is=0;is<no_surfaces;is++) {
for(ip=0;1ip<4;ip++) {
fscanf(tdffile, "%f %£ %f\n",
&plip] (0] [is].,&plip]l (1] {is],&plipl(2]1is]);

}
fscanf(tdffile, "$f %f %f aimpoint\n*, &apx, &apy, &apz);

fscanf(tdffile, " %f %f %$f xrot yrot zrot', &xrot, &yrot, &zrot);
WorldRotate3 (xrot,0);
WorldRotateld (yrot,1);
WorldRotate3d (zrot, 2);

fscanf{tdffile, "$d number of frames\n', &no_frames) ;
fscanf(tdffile, "%d number of images\n", &no_images);
for(im=0;im<no_images;im++) {

fscanf(tdffile, "\n%d %f %d %d image rotation axes fcount\n",

&image, &rot [im], &axn{im], &fcnt{im]);
for(is=0;is<no_surfaces;is++) {

fscanf rdffile, "\n%d %d surface ceclor\n", &surface,
&colorno[is] [im]);
}
}
}
void main(int argc,char *argv{l) {
int im,ifc;

float scale; /* read in file names */

if(arge<2) {
printf (*This program requires a test");
printf (" file name in the command line\n");
getch();
exit (0);

}

strcpy (namel,argv(1l]);

if((tdffile = fopen(namel, "r")) == NULL) ({
printf ("Could not open target description file (%s)\n",namel);
getch();
exit(0);
}

A - 27

tInit3();
Init3D(6);
SetWorldCoordinates(-10.0,-10.0,10.0,10.0);
LoadTargets () ;
frame_cnt = 0;
old_f _cnt = 1;
if(no_frames > 0) {
scale = (1.0/(float) no_frames);
WorldScalel3 (scale,scale, scale);
for (im = 0; 1im < no_images; im++) {
for(ifc = 0; ifc < fent[im]; ifc++) {
_clearscreen (_GVIEWPORT) ;
frame_cnt++; /* display image seguences */
scale = {({(float)frame_cnt/(float)old_£f_cnt);
WorldScalel (scale,scale,scale);
WorldRotateld (rot[im],axn[im]);
if (frame_cnt <= no_frames) {
DrawTarget {no_surfaces, im, frame_cnt) ;
}
old_f_cnt = frame_cnt;
getch{);

}
}
else printf("error - number of frames = 0\n");
Close3DGraphics () ;
fciose(tdffile);

A - 28

/*
filename: SHOW_3
This precgram accepts a test target description
file and outputs three views.

*/

#define MAX_TIMAGES 100

#define MAX_SURFACES 10

include <math.h>

include <graph.h>

include "worlddr.h"

include <stdio.h>

include "plot3d.h"

include "hpplot.h"

£ S S

int err,i,3j;
int color;
struct WorldRect wr;

float X, Y.Z:
float apx, apy, apz;

float rot [MAX_IMAGES] ;

int axn [MAX_IMAGES], colorno[MAY¥_SURFACES) [MAX_IMAGES];
float pl4] (3] (MAX_SURFACES];

int no_surfaces;

FILE *tdffile;

char name([20] ;

char namel [20];

/* draw image of target */

void DrawTarget (int no_surf, int image_no) {
struct point3D pv(5];

int isf,ipt;

for(isf=0;isf<no_surf;isf++) {
for(ipt=0;ipt<4;ipt++) {
pviipt].x plipt] (0] [isf];
pviipt].y = plipt][1][isf];
pviipt].z plipt] (2] [isf];

p(0][0] [isf];
p(0][1] [isf];
pl0][2]) [isf];

SelectColor(isf+l);
PolyFill3D(pv,1,1isf+1,5);

[T [1]

}

pvi4d] .x
pv(4].y
pvidl.z

[i

}
}
void LoadTargets (void)
{ /* read target description file */
int is,1ip;
char title[80];

fscanf(tdffile, "filename %s\n",title);

A - 29

fscanf(tdffile, "¥d number of surfaces\n", &no_surfaces);

for(is=0;is<no_surfaces;is++) {
for(ip=0;ip<4;ip++) {
fscanf (tdffile, "%f %f %f\n",
&plip] [0) [is],&plip] (1)} [is],&plip] (2]} {is]);

}

}
void main(int argce,char *argvi[]) {
int im,ifc; /* read file names */

float scale;

if (arge<2) |
printf (*This program requires a target");
printf (" description file name in the command line\n");
getch{);
exit (0);

}

strcpy (namel,argv[1i]);

if((tdffile = fopen(namel,"r")) == NULL) {
printf ("Could not open target description file (%s)\n",namel);
getch();
exit (0);

}
LoadTargets(); /* setup three D views */

rot (0] = -90.0;
axn[0] = 1;
rot[1] = 90.0;
axn[l] = 1;
rot[2] = 90.0;
axnilz2] = 0;
tInit3();
Init3D(6);

SetWorldCoordinates(-10.0,-10.0,10.0,10.0);

for (im = 0; im < 3; im++) { /* draw three views of target */

_clearscreen (_GVIEWPORT) ;
WorldRotate3 (rot[im],axn[im]}) ;
DrawTarget (no_surfaces, im);
getch();

}

Close3DGraphics () ;

fclose(tdffile);

A - 30

